an anopheles mosquito and the unicellular organism it transfers

Alejandro Marin Mendez is enthusiastic as he introduces himself to me and tells me about his work as a scientist.

Thinking he lives in Spain, he corrects me and explains he was born in Spain and currently lives in France. He mentions other places he’s lived as well as languages he’s learned. This is the life of a scientist, he happily notes.

We discuss Covid-19 restrictions and then go to the topic of Malaria.

He begins, I focus my research on the malaria parasite, which is called Plasmodium and it is unicellular.

There are 5 species of Plasmodium that affect humans: P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. It’s a vector-borne disease which means that it’s transmitted by mosquitoes (of the genus Anopheles).

According to the World Health Organization there are over 220 million cases of malaria infections reported in the world (mainly in the Southern hemisphere) and causes a 400,000 death toll per year, most of them being children under 5 years old infected with P. falciparum. Basically, it’s a massive health burden across the globe, especially affecting children in Sub-Saharan Africa.

The parasite needs to invade the RBC’s (red blood cells) as part of its life cycle. In the process of invading and egressing in and out of RBCs in a cycle that lasts between 24 and 72 hours, depending on the species, is when affected people develop all the symptoms (fever, anemia, headaches, muscular pain and in severe cases cerebral comma and death). Within the human body it mostly reproduces asexually, while later in the cycle it produces gametocytes that will commence sexual reproduction (2 cells give 1 cell) within the mosquito. I find that bit fascinating, that an unicellular organism has asexual and sexual reproduction across it’s life cycle!

My brain finds it hard to keep up….unicellular, P. falciparum, vector borne, RBC cycles…
I quick-note (aka doodle quickly) with stuff laying on my desk.

female Anopheles mosquito

My take:
An infected (and pregnant) Anopheles mosquito (vector) bites (sucks nutritious blood for maturation of its eggs) a human (host), injecting the malaria parasite (via its saliva glands) into the bloodstream (in the elongated form of a sporozoite).

The sporozoite (infective agent) enters the liver (hiding from the immune system) and multiplies (asexually) within liver cells (polyhedral hepatocytes). Liver cells eventually burst, sending what are now merozoites (who escape) out into the blood stream.

Did I get this right? Correct me if I didn’t.
Some merozoites (rounder form of the parasite) enter (bind to the surface) erythrocyte (aka, blood cell), where cycle continues in further complex stages: Ring stage, Trophozoite stage, Schizont stage (mature sporozoites)…while other merozoites develop into gametocytes.

Whew…there’s more but I’ll leave it for another day…

work in progress

Early in the zoom call, Alejandro referred to the parasite as a serial killer.

The last thing I ask: Do/does the parasite, in its various stages, communicate with each other?  I paraphrase here ↓ (cuz I found it complicated).
He explains, the parasite is basically a single-celled organism. (This doesn’t answer my question.) He says, we can talk philosophically or perhaps spiritually, and perhaps we might consider it communicates. Perhaps. And then he goes into the molecular and hypotheses…

…serial killer…silently creeping…plasmodium falciparum…

mosquito goes dark. work in progress.

Muchas Gracias Alejandro. Me gustó hablar contigo!
_________________

Alejandro Marin Mendez is a scientist and an avid bicyclist. He’s combined the two things he loves into a Public Engagement initiative where he brings cutting edge science to Secondary Schools and the general public, around the world.
For more  →
scicling.org.

#circles #cycles


©2020 ALL RIGHTS RESERVED BY MONICA AISSA MARTINEZ

i draw beautiful whipworms (note to self – these are parasites)

What a nice surprise to hear from María Adelaida. I’m pleased to learn she keeps an eye on my work as she notes my recent activity on microorganisms.

I know María from years back (2008-09). She is a biologist originally from Colombia, she’s in the valley working for the Mayo Clinic when I meet her at a friends party. She attends one of my art openings before moving to Germany to continue her education.

These days she lives in the UK and works at the Sanger Institute. Her current research is intestinal parasitic worms that cause neglected tropical diseases with a huge impact on children.

She has an idea for collaboration that includes a public engagement project.  Does she know how often I think about opportunity to engage with the public? It’s on my mind a lot especially after my summer artist residency at the Tempe Center for the Arts.

Maria Adelaida’s research is the Whipworm and Trichuriasis.

We talk about art as a form of communication. She talks about her work reaching a new audience. I enjoy the idea of my work reaching a different audience as well. She speaks STEM, I bring the A in and speak STEAM.

I’m intrigued. Can you send photos of these whipworms?

She sends a series of electron microscope images. Oooooh! The first ones, in black and white, defined and beautiful, show the marking and pattern of the male worm. He appears to float in stillness (I don’t imagine the intestines are a quiet place. Are they?)

Soon I receive a Powerpoint of larvae that is out of the eggs, she says, in the presence of bacteria. (I can’t identify the bacteria.) And then more photos patterned and stained bright show the internal structure of an adult female whipworm infecting the cecum of a mouse. A transversal section shows the eggs.

I make time to get to my drawing table. I want to better understand what I see.

Cecum, Eggs and my imagination.

I spend a day drawing the cecum, a pouch connecting the small and large intestine. I imagine the area with little light (dark) so I take my drawing into a filter and play with it ↑.

Cecum is from the Latin caecus and means blind – blind intestine, blind gut or cul de sac.
Maria identifies the super beautiful cecum epithelia and explains it is only a single layer of cells, that is folded in ‘crypts’ to maximize the area. 

I note the eggs. I wonder how long they take to hatch. (Is this the correct language? Do they hatch?)

I spend a few days looking at photos and drawing worms. Yes, they do resemble a whip.

The female is larger than the male. I’m surprised to know the thinner narrower end of the worm is where the mouth is located while the wider end is its rear.

I take the image into a filter and again imagine the inside of the large intestine.

I get lost in the drawing.  I have to remind myself these are parasites that cause serious problems to the host. #DrawingInProcess #2sided


I learn from Dr María A Duque-Correa whipworm infection causes Trichuriasis, which affects millions of children around the world. Her goal is to more fully understand the initial stages of the epithelia infection by the larvae, a crucial step that determines whether the worms are expelled or remain in the gut causing chronic disease. In the long term, this knowledge will help to develop vaccines and discover drugs to fight whipworm infections.

Here is one of her public engagement programs → Worm Hunters.

Crossing my fingers that we will work together in the future.